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ON THE KHINTCHINE CONSTANT 

DAVID H. BAILEY, JONATHAN M. BORWEIN, AND RICHARD E. CRANDALL 

ABSTRACT. We present rapidly converging series for the Khintchine constant 
and for general "Khintchine means" of continued fractions. We show that 
each of these constants can be cast in terms of an efficient free-parameter 
series, each series involving values of the Riemann zeta function, rationals, and 
logarithms of rationals. We provide an alternative, polylogarithm series for the 
Khintchine constant and indicate means to accelerate such series. We discuss 
properties of some explicit continued fractions, constructing specific fractions 
that have limiting geometric mean equal to the Khintchine constant. We 
report numerical evaluations of such special numbers and of various Khintchine 
means. In particular, we used an optimized series and a collection of fast 
algorithms to evaluate the Khintchine constant to more than 7000 decimal 
places. 

1. INTRODUCTION 

The Khintchine constant arises in the measure theory of continued fractionls. 
Every positive irrational number can be written uniquely as a simple continued 
fraction [ao; a1, a2,... , an, ... ], i.e., with ao a nonnegative integer and all other a? 
positive integers. The Gauss-Kuz'min distribution [13] predicts that the density 
of occurrence of some chosen positive integer k in the fraction of a random real 
number is given by 

Prob(an = k) =-10g2 [1-(k+1)21 

In his celebrated text, Khintchine [13] uses the Gauss-Kuz'min distribution to show 
that for almost all positive irrationals the limiting geometric mean of the positive 
elemenits ai of the relevant continued fraction exists and equals 

Ko :J [i?+ k(k+)] = g l1og2[1+?k(k+2) 

k=1 ~ ~ ~ ~~= 

The fundamental constant Ko is the Khintchine constant. Ever since Khintchine's 
elegant discovery there has been a keen interest in the numerical evaluation of Ko 
[14, 20, 26, 27, 24]. It is known that this constant can be cast in terms of various 
converging series, the following example of which having been used by Shanks and 
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Wrench to provide the first high-precision numerical values for Ko: 
00 

(1) log(Ko) log(2) = E C(2s) - 1 + 1_ + 1) 
s=1 

s2 3 2 

This series can be rendered even more computationally efficient via the introduction 
of a free integer parameter. We used a carefully optimized free-parameter series to 
resolve Ko to 7350 decimal places (Ko = 2.68545200106... see ?5). 

The Khintchine constant can be thought of as a member of a certain class 
of constants we shall call Khintchine means Kp, for real numbers p < 1. 
The Holder mean of order p of the continued fraction elements, namely 
limk[(ap + a2p + + ap)/k]1/P, also exists with probability one and again with 
probability one equals the constant: 

Kp := { -kP'092 [1 (k + 1)2]} 

k=1~~~~~~~~~~~~~~ 
(See the final section of Khintchine's book [13] for a proof for p < 2, or more modern 
references on ergodic theory for a proof for p < 1 [19].) We may interpret Ko as 
the limiting instance of the Kp definition as p -- 0. We shall show in Theorem 6 
below that for any negative integer p the Khintchine mean of order p satisfies an 
identity 

00 

(2) (Kp)P log(2) = Z(C(s - p) -1)Qsp 
s=2 

where each coefficient Qsp is rational. Again, there is a free-parameter general- 
ization, which we employed to resolve the harmonic mean K-1 also to over 7000 
decimal places (K-1 = 1.74540566240... see ?5). It is of interest that, evidently, 
only Ko can be written as a series involving exclusively even zeta arguments. The 
computational implications of this unique property of Ko are discussed in ?5. We 
should mention that aside from the series (1) for Ko there are other previously 
known formulae for Khintchine means, some of which involve derivatives of the 
zeta function [24]. 

In the next section we establish the series forms (1) and (2) for Ko and the 
general Khintchine means Kp, respectively. Actually, (1) and (2) can be thought 
of as degenerate cases of free-parameter forms in which an integer parameter can 
be optimized for numerical efficiency. Then in ?3 we present polylogarithm series 
and a certain zeta-like function whose evaluations can be used to accelerate the 
polylogarithm series. In ?4 we discuss explicit continued fractions with a view to- 
ward determining whether H6lder means exist and coincide with Khintchine means. 
In particular, some numbers known to have geometric mean (zeroth H6lder mean) 
equal to Ko are presented. Finally, in ?5 we discuss numerical details relevant to 
very-high-precision evaluation of Khintchine means. 

2. FUNDAMENTAL IDENTITIES 

This section is devoted to presenting the basic identities. We begin with a list 
of preliminary, largely elementary, results needed in the paper. The first lemma 
amounts to a set of observations due to Wrench and Shanks [27]. 
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Lemma 1. (a) We have 

- log(1- x) log(1 + x) = E) Akx x 
k=1 

where A, := iil(-1)m/m 

(b) Further, 

E log(1 - ) log(1 + k) - , log(k -1) log(1 - ) =T -log(N) log(1 + 
k=2 k=2 

(c) Thus, 
0011 

S log(1-k ) log(1 + k) =-log(Ko) log(2). 
k=2 

Proof. Part (a) is most easily seen by differentiating both sides. The left-hand 
side becomes f (x) -f (-x) where f (x) := log(1 + x)/(1 - x). Using the standard 
relationship 

00 00 k 

ak Xk = 5{5aj}Xk 
k=1 1-x k=1 j=1 

produces (a). 
Part (b) is easily established inductively after expanding the left-hand side. 
Part (c) follows on taking limits and noting that 

N 

-E log(k - 1) log(1 - -) = log(Ko) log(2), 
k=2 

as follows from the definition of Ko. C 

We shall find it convenient to use the Hurwitz zeta function defined by 
00 1 

C(s, N): (n + N)s) 

so that C(s) = ((s, 0) and so that for N a nonnegative integer 
N 

((s, N) = C(s) -1E 
n=1 

With this notation we have: 

Lemma 2. (a) For N a positive integer, 
00 

,:((n, N)= 

(b) For N a positive integer, 
00 

(2n, N) N+1I , (n = log(N ) 
n=1 n 

(C) 
I 

log(l-t2 ) -log2 (2). 
t(1 + t) d 
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Proof. The proofs of the first two identities are similar and rely on expanding the 
zeta terms, rearranging the order of summation and re-evaluating. In both cases, 
the result telescopes to the desired conclusion. 

Part (c) is less immediate. Actually, the indefinite integral is evaluable with the 
aid of the theory of the dilogarithm [15]. The integral 

log( - x )d 
X (l + X) 

equals the log terms 

log 2(1 + t) - log2(2) + log(2) log(1 - t) - log(1 + t) log(1 - t) + log(t) log(1 - t) 
2 

plus the dilog terms 

dilog(t) - dilog(1 + t) - dilog( )+ ) 
2' 

and the limit as t -? 1 yields the desired result - log2(2). C] 

We are now in a position to establish a general Shanks-Wrench identity [20] for 
Ko. 

Theorem 3. For any positive integer N, 
00 ~ A N 1 1 

(3) log(Ko)log(2)=EZ(2s,N) "->log(1- )log(1+ )? 
s=1 k=2 

where A. := 2-l1(_)ml/mj 

Remark. The integer N is a free parameter that can be optimized in actual compu- 
tations to significantly reduce the number of zeta evaluations required. Variation 
of this parameter also provides a kind of error check, for whatever the choice of 
positive integer N, one expects the same result for the left-hand side. Note that in 
the case N = 1 the second summation is empty, and we recover precisely the Ko 
identity (1) of ?1. 

Proof. Let f(N) denote the right-hand side of (1). Then 

f (N- 1) -f (N) = sN N 1) 
s=? 

which equals zero by Lemma 1(a). Thus, since C(2s, N) - 0 sufficiently rapidly, 

f(1) =f(N) = lim f(N) N---oo 

- - >3 log(1-k ) log(1 + 
k=2 

By Lemma l(c), this sum agrees with log(Ko) log(2). C] 

As a companion relation to the identity of Theorem 3, we can establish an elegant 
integral representation for the left-hand side. There is a powerful generalization of 
Lemma 2(b) in the form of a generating function based on Euler's product for 
sin(irt)/(irt) (see [23, p. 249]). For real t in [0,1) define g(t) by 

(4) g(t) : E (2s) -1t2s = -log sin(7(t) + log( 1t2), 
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and define also the limiting case g(1) := log 2. We only need observe now that, on 
the basis of Theorem 3 with parameter N = 1, 

[1 log(2) + g(t)/t 
log(Ko) log(2) = dt 

and with the help of the previous dilogarithm integral evaluation we thus arrive at 
an integral representation. (Reference [20] contains an equivalent integral identity.) 

Corollary 4. The following integral representation holds for Ko: 

11 log[sin(7rt)/(7rt)] d -log(Ko)log(2) 

It is amusing to observe that Lemma l(c) may also be turned into an analogous 
integral form: 

log([tJ) _ 1 log([1/tJ) 
log(Ko) log(2) = / + t) dt - _ __ t )dt. 

This was observed from a very different starting point by Robert Corless [11] but 
follows immediately on breaking the first integral up at integer points. 

We now derive new, corresponding identities for the higher-order Khintchine 
means. They are in some sense simpler, since one logarithmic term is replaced by 
a negative integral power. There is an observation that leads directly to a zeta 
function expansion for these general Khintchine means. Note that a sum of terms 
kP log(1 - (k + 1)-2) can be expressed, via expansion of the logarithm, in terms of 
sums of the form (note p is assumed to be a negative integer): 

00 1 

Z 
n2s-P(1/-n) P 

Upon expansion of the term 

1/(1 -1/n-P 

in powers of 1/n, we obtain an identity for the pth power of Kp as a series of zeta 
functions. The result, after the same manner of free-parameter manipulation we 
used for Ko, is a new series that can be thought of as a companion identity to the 
Shanks-Wrench expansion of Theorem 3. 

Theorem 5. For negative integer p and positive integer N we have 

1E 0Z -P1) E(2n + j -p,N) N) 
n=1 k=2 

Remark. Note that for N = I the final sum is empty, the coefficient of any given 
(s) is an easily computed rational, and we immediately establish a general series 

with rational coefficients, (2) of ?1. 

Corollary 6. The constant K-1 satisfies, for any integer N > 0, 

lo(~ 00 k-Z 2c N N log(2) E -kn=2 ((kj N) Elog(1 -Ak2) 

n=- n k=2 k-i 
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Proof. It suffices to show that for every positive integer n 

oo 2n 

?C(2n + j + 1, N) + (k, N) = 

i=? k=2 

This follows immediately from Lemma 2(a). 

3. POLYLOGARITHM SERIES 

There exist some interesting identities for the Khintchine constant in terms of 
polylogarithm evaluations. One particularly interesting polylogarithm identity is 
obtained by resolving the integral representation of Corollary 4 in polylogarithm 
terms [28]. One may employ the Euler product for sin z/z to write the integral as 
a sum of logarithmic integrals, each in turn expressible in terms of polylogarithms. 
This procedure leads to the series 

1 1 00 4 
log(Ko) log(2) = log2 (2) + Li2(-2) + _ (_l)nLi2(- 

n=2 

where, Lim(z) is the polylogarithm function: Lim(Z) := E'%?= Zkk-m. 
A somewhat different application of polylogarithms is to use the classical Abel 

identity [15] 

log(l1-x) log(l1-y) = U2 
x 

)+Li2(1 Y UL2 (X) -U2 (Y) - U2( )Y 

together with Lemma 1(c), setting x := 1/n, y := -1/n to obtain 

72 10 

log(Ko) log(2) = 6 - log2(2)+ E 2 
n=2 

An interesting line of analysis starting from this last polylogarithm series is to 
"peel off" parts of the Li2 function, casting the corrections in closed form. Such 
a procedure gives polylogarithm-based analogues of Theorem 3. For example, one 
can replace the last Li2 summand above with a more rapidly decaying term 

L(n2 - 1)-n2 - 1 4 (n2-1)2 

and add back a correction 

-()+4(2= 48 6 4' 

where Q is the zeta-like function 
00 

m) S 

(n2 1)m 

Careful Eulerian partial fraction decomposition (as detailed in [7]) can be used to 
produce a closed-form evaluation of Q(m) for any positive integer m. In this way 
one may accelerate the convergence of relevant polylogarithm sums. 
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4. EXPLICIT CONTINUED FRACTIONS 

It is remarkable that, even though a random fraction's limiting geometric mean 
exists and furthermore equals the Khintchine constant with probability one, not 
a single explicit real number (e.g., a real number cast in terms of fundamental 
constants) has been demonstrated to have elements whose geometric mean equals 
Ko. Likewise, for any negative integer p, not a single explicit real number has 
been shown to have elements whose Holder mean equals Kp. In any event, it 
is worthwhile to mention some classical continued fractions with respect to this 
theoretical impasse. 

The continued fraction for e is 

e, = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12,...] 

The elements are eventually comprised of a meshing of two arithmetic progressions, 
one of which has zero common difference while the other has difference two and 
diverges. Thus the meshing has diverging geometric mean. Thus, e does not possess 
geometric mean Ko. The harmonic mean for e does exist, but equals 3/2, which is 
not K-1. It turns out that any fraction with elements lying in a single arithmetic 
progression can be evaluated in terms of special functions. Explicitly, for any 
positive integers a, d we have [2, eq. 9.1.73] 

[a;a+d,a+2d,a+3d ...] d(d) 
Ia/d(2) 

where I, is the modified Bessel function of order v. These arithmetic progression 
fractions are certainly interesting, and not beyond deep analysis. It was known, for 
example, to C. L. Siegel that these fractions are transcendental [22]. But each such 
fraction has diverging geometric mean and indeed diverging H6lder means. Note 
that the means are monotone nondecreasing in p, and so a fraction with lim inf of 
its elements infinite has infinite means. 

Another example of interest is ir, whose continued fraction expansion is 

Jr= [3;7,15,1,292,1,1,1,2,1,3,...]. 

The continued fraction elements do not appear to follow any pattern and are widely 
suspected to be in some sense random. Based on the first 17,001,303 continued 
fraction elements, the geometric mean (of the fraction elements yielding the same 
precision) is 2.686393 and the harmonic mean is 1.745882 [12]. These values are 
reasonably close to Ko and K-1, but of course no conclusion can be drawn beyond 
this. 

It is a well-known theorem of Lagrange that the elements of a simple continued 
fraction form an eventually periodic sequence if and only if the fraction is an irra- 
tional quadratic surd. All H6lder means for p = 0, -1, -2, ... then exist, and are 
completely determined by one period of elements. Hence, each H6lder mean of a 
quadratic surd is an algebraic number. Clearly, for any algebraic number c = al/b 

formed from integers a, b, one can write down a quadratic surd having geometric 
mean c. Along these lines, it is not hard to show that if there exists an integer 
m > 2 such that 

log(Ko/m) 
log(2/m) 
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is rational, then there exists a quadratic surd with geometric mean Ko. Thus the 
issue of transcendence for Ko and related numbers is an interesting one, and one 
we return to in the next section. 

Even though no explicit real number is known to have elements whose geometric 
mean is Ko, it is still possible to fabricate explicit lists of elements whose geometric 
mean does equal Ko. If one were in possession of some representation of Ko to 
arbitrary accuracy, one could of course construct a fraction having geometric mean 
Ko by appending a "2" (respectively, "3") to the element list whenever the current 
geometric mean were above (below) Ko. There seems to be no way to determine a 
priori the value of, say, the nth element. Thus, such a constructed fraction is not 
explicit. 

But it is possible to give an explicit list of elements having the desired property. 
One successful construction has been given by [1], as follows. Consider the naturally 
ordered rationals in (0,1); that is, consider 

1/2, 1/3, 2/3,1/4, 2/4,3/4,1/5, 2/5,3/5,4/5, .. .. 

where for each successive denominator d = 2,3,4, ... we employ in increasing order 
all numerators between 1 and d - 1 inclusive. Now- consider the (finite) set of 
fraction elements for each rational in the list. (We also demand the caveat that no 
such terminating fraction is allowed to end with element 1, so for example 2/3 is 
the fraction [1, 2] rather than [1, 1, 1].) If we concatenate the elements from all the 
terminating fractions, the infinite chain of elements has limiting geometric mean 
equal to Ko. The resulting sequence of elements starts out: 

A= [2;3,1,2,4,2,1,3,5,2,2,1,1,2,1,4,6,3,2,1,2,1,5,7,3,2, .... 

The geometric mean of the first 15,000 elements of A is 2.35821 ..., which ap- 
pears low but note that as the denominator d increases during construction of the 
elements, larger and larger elements (such as d itself) appear. 

But one may construct elements whose geometric mean converges much more 
rapidly to Ko. One such construction is based on a deterministic stochastic sam- 
pling of the Gauss-Kuz'min density, and proceeds as follows. First, for non-negative 
integer n define the van der Corput discrepancy sequence [16] to be a set of the base- 
2 numbers 

d(n) = 0.bob1b2 ... 

where the bi are the binary bits of n, with bo being least significant. As n runs 
through positive integers, the sequence of d(n) is confined to (0,1) and has appealing 
pseudorandom properties. The construction of the number we shall call Z2 then 
starts with ao := 0, and loops as follows: 

For n = 1 to oo, set an := [l/(2d(n) - 1)J. 
The continued fraction elements an thus determined start out 

Z2= [0;2,5,1,11,1,3,1,22,2,4,1,7,1,2,1,45,2,4,1,8,1,3,1,14,1,...1. 

On the idea that the discrepancy sequence is in a certain sense equidistributed, 
we are moved to posit: 

Conjecture. The geometric mean of the number Z2 is in fact the Khintchine con- 
stant Ko. Furthermore, every limiting p-th Holder mean of Z2 for p = -1, -2,... 
is the respective Khintchine mean Kp. 
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With regard to the above conjecture, S. Plouffe [18] has reported a computation 
of the geometric and harmonic means through 5206016 continued fraction elements 
of Z2. His results are 2.6854823207 and 1.7454074435, respectively, which are re- 
markably close to the expected theoretical values. The authors have also been 
informed by T. Wieting that he has an unpublished proof of the basic conjecture, 
i.e., that the limiting H6lder means of Z2 exist for p = 0, -1, -2, ... and furthermore 
equal the corresponding Khintchine means [25]. In the wake of such positive results, 
one can ask in addition for, say, the rate of convergence to Ko. Again on the basis 
of the distribution of discrepancy values we think it reasonable to conjecture that 
the geometric mean G, of the first n elements of Z2 satisfies 

IGn-KoI < c/n1/2 

for some absolute constant c. 
Yet a third, and novel construction runs as follows. First, for the correct Gauss- 

Kuz'min density of l's, namely P1 = log2(4/3), generate a list of 0's and l's by 
assigning element values an = k([np1] - [(n - 1)pil) for r- > 0 and k = 1. Now 
replace the remaining 0's in the sequence with 2's, by replacing P1 with p2/(i - P1) 
and incrementing k to 2, in which case the index n on an refers, naturally, to the 
nth zero of the preceding list. Continuation of this construction for k = 3,4,. 
gives a real number: 

R= [0;1,2,1,3,1,4,2,1,5,6,2,1,3,1,7,1,8,2,1,4,1,3,2,1,9,1,...1. 

Through 100,000 elements the geometric and harmonic means for R work out to 
be 2.6753 and 1.7454, respectively. Although we have not done so, it should be 
possible to prove for example that the limiting geometric mean of these elements 
is indeed Ko. 

5. COMPUTATION OF KHINTCHINE MEANS 

As intimated in our introduction, calculation of Ko has occupied the attention 
of various researchers. For example, Gosper recently computed Ko to 2217 digits 
[12]. Our 7350-digit value is in complete agreement with Gosper's 2217 digits. 
There is also the interesting problem of computing fraction elements from decimal 
representations of certain real numbers, a task that one may wish to do in, say, 
statistical experiments involving Khintchine means. We mention that in [21] an 
interesting algorithm is presented for computation of fraction elements without 
recourse to decimal input. Instead, differential properties of an appropriate function 
are used. For example, Shiu resolved 10,000 elements of the fraction for et using 
properties of the function f(t) = sin(log(t)). 

By exploiting various modern algorithms to be described presently, the present 
authors have explicitly computedcdots Ko and K-1 to more than 7350 decimal 
digit accuracy. These computations were performed with the aid of the MPFUN 
multiprecision software [4, 5], which was found to be significantly faster for our 
purposes than other available multiprecision facilities. One utilizes this software 
by writing ordinary Fortran-90 code, with multiprecision variables declared to be 
of type mpAinteger, mp-real or mp-complex. In the computations described be- 
low, the level of precision was sufficiently high that the "advanced" routines of the 
Fortran-90 MPFUN library were employed. These routines employ special algo- 
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rithms, including fast Fourier transform (FFT) multiplication, which are efficient 
for extra-high levels of precision. 

The constant Ko was computed using the formula given above in Theorem 3, 
with the free integer parameter N = 100, and with N = 120 as a check. The 
implementation of this formula was straightforward except for the computation of 
the Riemann zeta function. To obtain 7350-digit accuracy in the final result, 2048 
terms of the indicated series were evaluated, which requires {C(2k), 0 < k < 2048} 
to be computed. One approach to compute these zeta function values is to apply 
formulas due to P. Borwein [8]. These formulas are very efficient for computing 
one or a few zeta function values, but when many values are required as in this 
case, another approach was found to be more efficient. This method is based on 
an observation that has previously been used in numerical approaches to Fermat's 
"Last Theorem" [9, 10], namely 

00 

coth(irx) = -2E Z (2k) (-1)kx2k 
7TX 

k=O 

= cosh(irx)/sinh(irx) 

_ 1 1 + (irx)2/2! + (irx)4/4! + (irx)6/6! + 
7rX 1 + (irx)2/3! + (irx)4/5! + (irx)6/7! + 

Let N(x) and D(x) be the numerator and denominator polynomials obtained by 
truncating these two series to n terms. Then the approximate reciprocal Q(x) of 
D(x) can be obtained by applying the Newton iteration 

Qk+?(X) = Qk(X) + [1-D(X)Qk(X)]Qk(X). 

Once Q(x) has been computed to sufficient accuracy, the quotient polynomial is 
simply the product N(x)Q(x). The required values C(2k) can then be obtained 
from the coefficients of this polynomial. 

Computation time for the Newton iteration procedure can be reduced by starting 
with a modest polynomial length and precision level, iterating to convergence, dou- 
bling each, etc., until the final length and precision targets are achieved. Computa- 
tion time can be further economized by performing the two polynomial multiplica- 
tions indicated in the above formula using a FFT-based convolution scheme. In our 
implementation, FFTs were actually performed at two levels of this computation: 
(i) to multiply pairs of polynomials, where the data elements to be transformed are 
the multiprecision polynomial coefficients, and (ii) to multiply pairs of multipreci- 
sion numbers, where the data elements to be transformed are integers representing 
successive sections of the binary representations of the two multiprecision numbers. 

The constant K-1 was computed by applying the formula in Corollary 6. Again, 
the challenge here is to precompute values of the Riemann zeta function for integer 
values. But in this case both odd and even values are required. The odd values can 
be economically computed by applying the following two formulas, the first given 
by Ramanujan, but simplified slightly and known earlier; the second derived by 
differentiating a companion identity of Ramanujan [6, ch. 14]': 
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00 1 
C(4N+3) =-2E k4N+3(exp(2k7r) - 1) 

2N+2 B2BN4k 
- 7r(27r)4N?2 E (_l)k B2kB!4N?+4 -2k) 

k= (2k)!(4N 4-2k)! 

C(4N + 1) = - 1 (2irk + 2N) exp(2irk) 
- 2N 

N k1 k4N+l(exp(2kir) - 1)2 

1 2N+1 

- -7(,F4 E B)k 2kB4N?2-2k 2N lr(2lr 
(k=1 (2k - 

1)!(4N + 2 -2k)! 

Here B2k is as always the 2kth Bernoulli number. 
Alternatively, the formulas can be written in terms of the even zetas as 

00 

((4N + 3) =-2 E k4N+3 (exp(2k7r) - 1) 

1 (4N ? 7)c4N -N 
+?- ( + (4N + 4) >3 2C(4k)C(4N + 4- 4k)}, 

k=1 

C(4N + 1) 
1 , (27rk + 2N) exp(2irk) 

- 2N 
N kN k4N+l(exp(2k7r) - 1)2 

2N 

+ 2Nr{Z(_1)k2kC(2k)C(4N + 2 - 2k) + (2N + 1)C(4N + 2)}. 
k=1 

These two formulas are not very economical for computing a single odd value or 
just a few odd values of C(k) again, the formulas in [8] are more efficient for such 
purposes. But these Ramanujan formulas are quite efficient when a large number 
of odd zetas are required. Note that the infinite series in the two formulas can be 
inexpensively evaluated for many N simultaneously, since the expensive parts of 
these expressions do not involve N. F'urther, the evaluation of the infinite series can 
be cut off once terms for a given N are smaller than the "epsilon" of the numeric 
precision level being used. Happily, convergence here is fairly rapid for large N. 

At first glance, the latter summations in these two formulas may appear quite 
expensive to evaluate. But note that each is merely the polynomial product of two 
vectors consisting principally of even zeta values. Thus, both sets of summation 
results can be computed using multiprecision FFT-based convolutions. 

Computation of Ko to 7350 digit precision required 2.5 hours on an IBM RS6000/ 
590 workstation, and computation of K-1 also to 7350 digits'required some 12 
hours. Excerpts of the resulting decimal expansions for each are included in the 
appendix. The complete expansions are available from' the authors. 

One intriguing question that was raised decades ago [27] is whether the continued 
fraction elements of Ko themselves enjoy a limiting geometric mean Ko. We can 
of course ask more generally whether, for the fraction elements of any Khintchine 
mean Kp, the limiting H6lder mean of order q is in fact Kq. During the task of 
computing from a given decimal representation a H6lder mean of some order, the 
issue of where to terminate the list of continued fraction elements is an interesting 
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TABLE 1. Continued fraction statistics 

| Cont. Frac. Geometric Harmonic 
Constant Elements mean mean 
Ko 7182 2.660716 1.745541 
K-1 7052 2.722471 1.746871 
A 15000 2.358251 1.745395 
R 100000 2.6753 1.7454 
Z2 5206016 2.685482 1.7454074 
_r 17001303 2.686393 1.745882 

one. We employed a simple criterion: if x is known numerically, to D decimals to 
the right of the decimal point, generate continued fraction elements for x until a 
convergent p/q has 2q2 > IOD. The motivation for choosing this simple criterion is 
the theorem that at least one of any two successive convergents must satisfy 

p 1 
P--XI < 22 

iq 2q2 

and conversely, any reduced ratio p/q satisfying this inequality must be a convergent 
of x [13]. 

Our results are shown in Table 1, together with results for the constants K-1, A, 
R, Z2 (which were defined above), and ir. To give statistical perspective to our 
results for Ko and K-1, we computed the geometric and harmonic means of the 
first 7000 fraction elements for each of 100 pseudorandom multiprecision numbers 
of the same precision, namely 7350 decimal digits. The average and standard 
deviation of their geometric means were 2.683740 and 0.030124, respectively. The 
same statistics for their harmonic means were 1.745309 and 0.011148, respectively. 
Note that these two averages are in good agreement with the theoretical values Ko 
and K-1. In any event, it appears that the geometric and harmonic means for the 
first 7182 elements of our 7350-digit Ko are within reasonable statistical limits of 
the expected theoretical values. 

A question implicitly asked in the previous section is whether Ko or K-1 is 
algebraic. This question can be numerically explored by means of integer relation 
algorithms. A vector of,real numbers (xi, x2, ... , xn) is said to possess an integer 
relation if there exist integers ak such that a1x1 + a2x2 ? + anxn = 0. It can 
easily be seen that a real number a is algebraic of degree n - 1 if and only if 
the vector (1, a, a 2, ..., an-1) possesses an integer relation. Even if a is not 
algebraic, integer relation algorithms produce bounds that allow one to exclude 
relations within a region. 

We employed the "PSLQ" algorithm developed by Ferguson and one of the 
authors, a simplified version of which is given in [3]. This algorithm, when applied 
to power vectors generated from our computed values of Ko or K-1, found no 
relations for either. On the contrary, we obtained the following result: if Ko satisfies 
a polynomial of the form 

0 = ao + ala + a2a 2+ a3a3 + *+ a50oa0 

in the variable a, then the magnitude of some integer coefficient ak exceeds 1070. 
The same was found to be true for K-1. 
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In a second experiment, we explored the possibility that Ko or K-1 is given by 
a multiplicative formula involving powers of primes and some well-known mathe- 
matical constants. To that end, let Pk denote the kth prime. We established, using 
PSLQ, that neither Ko nor K-1 satisfies a relation of the form 

15 

0 = ao log ai + E ak logPk 
k--l 

+ a16log1 + a7 log0e + a18 log1y + ai9 log ((3) + a20log log 2 

with integer coefficients ak of absolute value 1020 or less. By exponentiating this ex- 
pression, it follows that neither Ko nor K-1 satisfies a corresponding multiplicative 
formula with exponents of absolute value 1020 or less. 

There are many other tests that might be applied. For example, further work 
might be to rule out the possibility that logKo, (logKo)(log2), or one of many 
other forms involving Ko be an algebraic number of low degree. 

ACKNOWLEDGMENT 

Thanks are due to Robert Corless, Greg Fee, Thomas Wieting, Simon Plouffe, 
and Joe Buhler for many helpful discussions. We are grateful to a referee for 
suggesting the construction of the candidate number R at the end of ?4. 

APPENDIX 

The Khintchine Constant Ko to 7,350 Digits 
2. 
68545200106530644530971483548179569382038229399446 
29530511523455572188595371520028011411749318476979 
95153465905288090082897677716410963051792533483259 
66838185231542133211949962603932852204481940961806 
86641664289308477880620360737053501033672633577289 
04990427070272345170262523702354581068631850103237 
46558037750264425248528694682341899491573066189872 
07994137235500057935736698933950879021244642075289 
74145914769301844905060179349938522547040420337798 
56398310157090222339100002207725096513324604444391 

36909874406573435125594396103980583983755664559601 

The Khintchine Harmonic Mean K-1 to 7,350 Digits 
1. 
74540566240734686349459630968366106729493661877798 
42565950137735160785752208734256520578864567832424 
20977343982577985596531102601834294460206578713176 
15026238960612981165718728271638949622593992929776 
06160830078357479801549029312671643067241248453710 
96077711207484391474195803753220015690822609477078 
44894635568203493582068440202422591615018316479048 
29229656977733143662210991806388842581650599997697 
61391683577259217628635718712601565066754443340174 
00283376465305136584406098398017126202832041200630 



430 DAVID H. BAILEY, JONATHAN M. BORWEIN, AND RICHARD E. CRANDALL 

78553128249666473680304034761497467330708479436280 

Khintchine Means Kp to 50 Digits for Various Negative p 
p Kp 

-2 1.450340328495630406052983076680697881408299979605904... 
-3 1.313507078687985766717339447072786828158129861484792... 
-4 1.236961809423730052626227244453422567420241131548937... 
-5 1.189003926465513154062363732771403397386092512639671... 
-6 1.156552374421514423152605998743410046840213070718761... 
-7 1.133323363950865794910289694908868363599098282411797 ... 
-8 1.115964408978716690619156419345349695769491182230400 ... 
-9 1.102543136670728013836093402522568351022221284149318 ... 
-10 1.091877041209612678276110979477638256493272651429656 ... 
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